
Computer Programming II Dr. Raidah Salim

ARRAYS ………………………………………………………………………..

 One Dimensional Arrays(1D Arrays)
 Processing 1D Arrays
 Searching

 Sorting
 Multidimensional Arrays(2D Arrays)
 Processing 2D Arrays

One Dimensional arrays

 Array is a collection of a fixed number of elements all of the same

data type and arranged in a list form.

Syntax

Type arrayName[arraySize];

Where:

– Type specifies the kind of array elements

– the brackets [] indicate this is an array

– arrayName is the array variable
– arraySize is the number of elements

Q: Declares an array num of five elements. Each element is of type
int?
Ans:

 int num[5];

 Accessing Array elements
To access individual elements of an array using:

– the name of the array
– a number (index or subscript) that tells which of the

element of the array

type of elements
array name

number of elements

Computer Programming II Dr. Raidah Salim

Syntax:
arrayName[indexExp]

where:
 indexExp is any expression whose value is a nonnegative integer
within range: between 0 and arraySize-1. The index value specifies
the position of the element in the array.

What value is stored in count[2]?

 Declaration and initialization Array

Used when exact size and initial values of an array are known,

where:

– We can fully initialize an array in its declaration or partial .
– We can omit the size of an array that is being fully initialized

since the size can be deduced from the initialization list.
– Syntax:

Type arrayName[arraySize]={initialization list};

 or

Type arrayName[]={initialization list};

Examples:
1. double sales[5] = {12.25, 32.50, 16.90, 23, 45.68};
2. int list[10] = {0};
3. int list[10] = {8, 5, 12}; // all other elements to 0.
4. newList = list; // illegal
5. int list[5] = {0, 4, 8, 12, 16};
 int newList[5];

 cin >> newList; //illegal

 cout << newList; // illegal
 if (list <= newList) // illegal

list of constant expressions of the appropriate

element-type separated by commas.

Computer Programming II Dr. Raidah Salim

 Processing Array Elements
 Some of the basic operations performed on a one-dimensional array
requires the ability to step through the elements of the array. This is
easily accomplished using a loop to process each of the elements of the
array in turn. For example, suppose that we have the following
statements:
 int list[100]; //list is an array of size 100
 for (int i = 0; i < 100; i++)
 // process list[i]

 Steps to read 100 numbers from the keyboard and store the
numbers in list:

for (i = 0; i < 100; i++)
 cin >> list[i];

 Steps to printing the elements of array list:
for (i = 0; i < 100; i++)
 cout << list[i] << " ";

 Steps to finding the sum and average of an array list:
sum = 0;
for (index = 0; index < 100; index++)
 sum = sum + list[index];
average = sum / 100;

 Steps to finding Largest element in the array:
largestElem = list[0];
for (index = 1; index < 100; index++)
 if (list[index] >maxValue)
 largestElem =list[index];

 steps to copy one array list into another array newList:
for (int index = 0; index < 5; index ++)

 newList[index] = list[index];

Computer Programming II Dr. Raidah Salim

Problems:

1. Write program to read N numbers, find their sum, and print the
numbers in reverse order.

 2. Suppose we need analyze students' test performance in
course IS102. We need a program to:

 let us to enter the test score.
 compute and display the average.
 give a report with names, scores, and deviation from the average.

Example

• Display the name in a prompt
• Read the score

• Compute average

• Print summary, including deviation from mean

Algorithm:

1. Define STUDENTS array to hold names and array scores to hold
test scores

2. For each student in array

a) display name & prompt
b) read double values to store in array scores

3. Compute average, display it
4. For each student in array

a) Display name, test score, difference between that score and
average

We need:
b) array of student names
c) use of NUMBER_OF_STUDENTS constant
d) for loops to process the arrays

 Arrays as Parameters to Functions

 In C++ arrays passed as parameters to functions by reference only,
the do not use the symbol & when declaring an array as a formal
parameter and the size of the array is omitted.

Test Analysis – enter scores:

Fatma : 92

Sara : 79

Mohmmed: 95

 . . .

Average = 87.39

Summary …

Computer Programming II Dr. Raidah Salim

 You can pass to function the array's name without an index.
 The following program fragment passes the array arr to func1():

int main(void) {
 int arr[10];
 func1(arr);
 .
 .
 .
 }

 If a function receives a one-dimension array, you may declare its
formal parameter as a sized array, or as an unsized array.

 to receive arr, a function called func1() can be declared as:
void func1(int x[10]) // sized array
 {
 .
 .
 .
 }
or as:
void func1(int x[]) // unsized array
 {
 .
 .
 .
}

note:
 C++ does not allow functions to return a value of the type array.

 typedef statement

typedef statement use for defines a new data type.

Syntax:

 typedef type typeName;

 Example: To declare array with 20 element for store scores for 20
student, there two forms:
Form1:
 const int NO_OF_STUDENTS = 20;
 int testScores[NO_OF_STUDENTS];

Computer Programming II Dr. Raidah Salim

Form 2:
 const int SIZE = 50;
 typedef double list[SIZE]; double yourList[50];
 list yourList, mylist; double myList[50];

 Sorting an array
Arranging items in a list ascending or descending order is one of
the most common operations performed on a list. There are
several algorithms to accomplish this – some are known as:

– bubble sort
– selection sort
– quicksort

Bubble sort: This algorithm is efficient for small lists the simplest
sorting algorithm.

void bubbleSort(int list[], int listLength) {
 int flag=1;
 while (flag==1)
 { flag =0;
 for (int i=0 ; i<listLength-1; i++)
 if (list[i] >list[i+1)
 {
 swap(list[i], list[i+1];
 flag=1;
 }// if
 }//while
}// bubbleSort

 Searching in array
Searching a list for a given item is one of the most common
operations
performed on a list. There are several algorithms to accomplish
this – some are known as:

– Sequential search

– Binary search

 Equivalent

Computer Programming II Dr. Raidah Salim

The following function for the simplest search algorithm called the
sequential search or linear search, it tasks include:

– begin with first item in a list
– search sequentially until desired item found or reach end of

list
– with n items in the list, may require n comparisons to find

target

int seqSearch(int list[], int listLen, int searchItem) {
 int loc;
 loc = 0;
 while (loc < listLen && list[loc] != searchItem)
 loc++;
 if (loc<listLen) return loc;
 else return -1;
 }

Character arrays (or string)

 C++ supports two types of strings. The first is character arrays and the
null-terminated string (also called C-string).
 Character array: An array whose elements are of type char.
 null-terminated string : sequence of zero or more characters enclosed

in double quotation marks, the last character is always the null(null
character is represented as '\0').

char studentName[26];
 studentName = "Sara and Fatma"; //illegal

 assignment and comparison, are not allowed on string, then C++
provides a set of functions that can be used for string
manipulation (found in string header file) while Most rules that
apply to other arrays also apply to character arrays.

in the following summarizes these functions.

 Reading and Writing Strings
String Input
 the function get used to read strings that has two parameters:

1. string variable;
2. parameter specifies how many characters to read into the string
variable.

Computer Programming II Dr. Raidah Salim

Syntax:
cin.get(str, m);

Example:
 char str[31];
 cin.get(str, 31);

 The getline stream function use to read and store a line of input:

Example:
 char textLine[100];
 cin.getline(textLine, 100);

String Output
 The output of strings by using an output stream variable, such as
cout and puts.

Two Dimensional Arrays

 Two-dimensional array is a collection of a fixed number of element
arranged in rows and columns , where in all elements are of the same
type. In two-dimensional arrays the data is provided in a table form.

 Syntax

Type arrayName[arraySize1][arraySize2];

Example : Declares a two-dimensional array sales of 10 rows and 5
columns.
Ans:
double sales[10][5];

type of elements
array name

number of rows number of columns

Computer Programming II Dr. Raidah Salim

 Accessing Array elements
Syntax:

arrayName[indexExp1][indexExp2]
 Where indexExp1 and indexExp2 are expressions nonnegative integer
values. indexExp1 specifies the row position; indexExp2 specifies the
column position.
The statement: list[5][2] = 25;

 Array Initialization

 Like one-dimensional arrays, two-dimensional arrays can be initialized

when they are declared.

Example: suppose the following:
int board[4][3] = {{2, 3, 1}, {15, 25, 13}, {20, 4, 7}, {11, 18, 14}};

 row1 row2 row3 row4
note:
 For number arrays, if all elements of a row are not specified, the
unspecified elements are initialized to 0. In this case, at least one of the
values must be given to initialize all the element of a row.

 Processing 2D arrays
 A two-dimensional array can be processed in three ways:
1. Process the entire array such as initializing and printing the array.
2. Process a particular row of the array, called row processing such as
finding the largest element in a row or finding the sum of a row.
3. Process a particular column of the array, called column processing,
such as finding the largest element in a column or finding the sum of a
column.
 Each row and each column of a two-dimensional array is a one-
dimensional array. Therefore, when processing a particular row or

Computer Programming II Dr. Raidah Salim

 Equivalent

column of a two-dimensional array, we use algorithms similar to those
that process one-dimensional arrays.

To process row=5 :

for (col = 0; col<NUMBER_OF_COLUMNS; col++) for (col = 0;col<NUMBER_OF_COLUMNS;col++)
 process matrix[row][col] ; process matrix[5][col];

 To process column number 2 of matrix (col =2):

for (row = 0; row<NUMBER_OF_ROWS; row++) for (row = 0; row<NUMBER_OF_ROWS; row++)
 process matrix[row][col] ; process matrix[row][2];

 Steps to initialize row 4 to 0:

 row = 4;
 for (col = 0; col < NUMBER_OF_COLUMNS; col++)
 matrix[row][col] = 0;

 Steps to initialize the entire matrix to 0

for (row = 0; row < NUMBER_OF_ROWS; row++)
 for (col = 0; col < NUMBER_OF_COLUMNS; col++)
 matrix[row][col] = 0;

 Steps to print the elements of matrix, one row per line:

for (row = 0; row < NUMBER_OF_ROWS; row++) {
 for (col = 0; col < NUMBER_OF_COLUMNS; col++)
 cout << matrix[row][col] << " ";
 cout << endl;
 }

 Steps to inputs the data into row number 4 of matrix:

row = 4;
for (col = 0; col < NUMBER_OF_COLUMNS; col++)
 cin >> matrix[row][col];

 Steps to input data into each element of matrix.

for (row = 0; row < NUMBER_OF_ROWS; row++)
 for (col = 0; col < NUMBER_OF_COLUMNS; col++)
 cin >> matrix[row][col];

 Equivalent

Computer Programming II Dr. Raidah Salim

 Steps to loop finds the sum of row number 4 of matrix:
sum = 0;
row = 4;
for (col = 0; col < NUMBER_OF_COLUMNS; col++)
 sum = sum + matrix[row][col];

 Steps to find the sum of each row separately.

 for (row = 0; row < NUMBER_OF_ROWS; row++) {
 sum = 0;
 for (col = 0; col < NUMBER_OF_COLUMNS; col++)
 sum = sum + matrix[row][col];
 cout << "Sum of row " << row + 1 << " = " << sum << endl;

 }

 Steps to sum of each individual column:
for (col = 0; col < NUMBER_OF_COLUMNS; col++){
 sum = 0;
 for (row = 0; row < NUMBER_OF_ROWS; row++)
 sum = sum + matrix[row][col];
 cout << "Sum of column " << col + 1 << " = " << sum << endl;
 }

 Steps to determines the largest element in row 4:

largest = matrix[row][0]; //Assume that the first element of
for (col = 1; col < NUMBER_OF_COLUMNS; col++)
 if (largest < matrix[row][col])
 largest = matrix[row][col];

 Steps to determines the largest element in each row :

for (row = 0; row < NUMBER_OF_ROWS; row++) {
 largest = matrix[row][0]; //Assume that the first element of the row is the largest.

 for (col = 1; col < NUMBER_OF_COLUMNS; col++)
 if (largest < matrix[row][col])
 largest = matrix[row][col];
 cout << "The largest element in row " << row + 1 << " = "<< largest
<< endl;
}

Computer Programming II Dr. Raidah Salim

 Steps to determines the largest element in each column:
for (col = 0; col < NUMBER_OF_COLUMNS; col++){
 largest = matrix[0][col]; //Assume that the first element of the column is the largest.

 for (row = 1; row < NUMBER_OF_ROWS; row++)
 if (largest < matrix[row][col])
 largest = matrix[row][col];
 cout << "The largest element in column " << col + 1 << " = " <<
largest << endl;

 Passing Two-Dimensional Arrays as Parameters to
Functions

 Two-dimensional arrays can be passed as parameters to a function,
and they are passed by reference. C++ stores two-dimensional arrays in
row order form, the compiler must know where one row ends and the
next row begins. Thus, when declaring a two-dimensional array as a
formal parameter, you can omit the size of the first dimension, but not
the second; that is, you must specify the number of columns.

 Suppose we have the following declaration:
const int NUMBER_OF_ROWS = 6;
const int NUMBER_OF_COLUMNS = 5;

// fuction to print the elements of matrix:
void printMatrix(int matrix[][NUMBER_OF_COLUMNS], int noOfRows){
 int row, col;
 for (row = 0; row < noOfRows; row++) {
 for (col = 0; col < NUMBER_OF_COLUMNS; col++)
 cout << matrix[row][col] << " ";
 cout << endl;
 }
}

Computer Programming II Dr. Raidah Salim

// function to output sum of the elements of each row of a two
dimensional array whose elements are of type int.
void sumRows(int matrix[][NUMBER_OF_COLUMNS], int noOfRows){
 int row, col;
 int sum;
 for (row = 0; row < noOfRows; row++){
 sum = 0;
 for (col = 0; col < NUMBER_OF_COLUMNS; col++)
 sum += matrix[row][col];
 cout << "Sum of row " << (row + 1) << " = " << sum << endl;
 }
 }

 function to determines the largest element in each row:

void largestInRows(int matrix[][NUMBER_OF_COLUMNS], int
noOfRows{
 int row, col;
 int largest;
 for (row = 0; row < noOfRows; row++) {
 largest = matrix[row][0];
 for (col = 1; col < NUMBER_OF_COLUMNS; col++)
 if (largest < matrix[row][col])
 largest = matrix[row][col];
 cout << "The largest element of row "<< (row+1)<< "=" <<
largest <<endl;
 }
 }

Multi Dimensional Arrays

General form for multi dimensional array:
Type arrayName [arraySize1] [arraySize2] … [arraySizen];
Where

– Type is any known type

– arrayName is array name
– arraySizei is the number of elements for the dimension i

(i=1..n)

Computer Programming II Dr. Raidah Salim

Suppose we need to store phone directory for N person, we need

program to:

1. Let us to enter name and phone number

2. Display phone number for any person

